Analysis and Design of a High-Order Discrete-Time Passive IIR Low-Pass Filter
In this paper, we propose a discrete-time IIR low-pass filter that achieves a high-order of filtering through a charge-sharing rotation. Its sampling rate is then multiplied through pipelining. The first stage of the filter can operate in either a voltage-sampling or charge-sampling mode. It uses sw...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2014-11, Vol.49 (11), p.2575-2587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a discrete-time IIR low-pass filter that achieves a high-order of filtering through a charge-sharing rotation. Its sampling rate is then multiplied through pipelining. The first stage of the filter can operate in either a voltage-sampling or charge-sampling mode. It uses switches, capacitors and a simple gm-cell, rather than opamps, thus being compatible with digital nanoscale technology. In the voltage-sampling mode, the gm-cell is bypassed so the filter is fully passive. A 7th-order filter prototype operating at 800 MS/s sampling rate is implemented in TSMC 65 nm CMOS. Bandwidth of this filter is programmable between 400 kHz to 30 MHz with 100 dB maximum stop-band rejection. Its IIP3 is +21 dBm and the averaged spot noise is 4.57 nV/√Hz. It consumes 2 mW at 1.2 V and occupies 0.42 mm 2 . |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2014.2359656 |