Impact of Electrode Shape on the Performance of a Gas Discharge Arrester

This paper deals with the impact of a gas discharge arrester's electrodes' shapes on its performance. When after extinguishing the electric arc between the electrodes of the gas discharge arrester and the electric-field strength between the electrodes exceeds the critical value, reignition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2015-02, Vol.30 (1), p.463-471
Hauptverfasser: Ribic, Janez, Pihler, Joze, Kitak, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the impact of a gas discharge arrester's electrodes' shapes on its performance. When after extinguishing the electric arc between the electrodes of the gas discharge arrester and the electric-field strength between the electrodes exceeds the critical value, reignition occurs. Computation of the electric-field strength between the electrodes of the existing gas discharge arresters using the finite elements method shows that electric-field strength reaches its highest values at the edges of the electrodes. It therefore makes sense to reduce the electric-field strength E at the edges of the electrodes by changing the electrodes' shapes. This also reduces the risk of reigniting the electric arc between the electrodes and improves the arrester's ability to self-extinguish. The electrodes can be geometrically shaped in such a way that ensures much uniform distribution of the electric-field strength E as possible. This paper describes the model of a gas discharge arrester and the use of a differential evolution optimization algorithm for computation of the more adequate shapes of electrodes. Thus, uniform distribution of the electric-field strength is ensured between the gas discharge arrester electrodes.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2014.2357496