Comments on "A Controllability Counterexample" and the Continuation Lemma

A Technical Note in this journal vol. 50, no. 6, pp. 840-841, June 2005, by Elliott, gives a bilinear example showing that the Euler discretization of a noncontrollable continuous-time system can be controllable. The example is correct, but there was a flaw in a result of the TN, Lemma 1 ("for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2015-04, Vol.60 (4), p.1169-1171
Hauptverfasser: Elliott, David L., Lin Tie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1171
container_issue 4
container_start_page 1169
container_title IEEE transactions on automatic control
container_volume 60
creator Elliott, David L.
Lin Tie
description A Technical Note in this journal vol. 50, no. 6, pp. 840-841, June 2005, by Elliott, gives a bilinear example showing that the Euler discretization of a noncontrollable continuous-time system can be controllable. The example is correct, but there was a flaw in a result of the TN, Lemma 1 ("for discrete-time systems, local controllability implies controllability") that has independent interest. In this note, the lemma is reformulated as a conjecture for continuous-in-state systems, and it is also proved under additional conditions. For a class of two-dimensional bilinear systems the Euler discretization is shown directly to be small-controllable, a fortiori controllable.
doi_str_mv 10.1109/TAC.2014.2352771
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6887347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6887347</ieee_id><sourcerecordid>10_1109_TAC_2014_2352771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-51913ac91a6007a62dd0795cd5e1e1344ebac7881d34d70c3c4c7c8a337d00343</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpvQfeK988hMliH4KATc1PUwnbnFSB4lmYL996a2uDocON9ZfIw9ImSIUDxvyirjgDLjQnGt8YotUCmTcsXFNVsAoEkLbvJbdjdN33PNpcQFW1dD11Efp2Tok1WZVEMfx6Ft3bZpm3ic-6GPNNKP6_YtrRLXhyR-0d-u6Q8uNjNXU9e5e3azc-1ED5dcss_Xl031ntYfb-uqrFPPMY-pwgKF8wW6HEC7nIcAulA-KEJCISVtndfGYBAyaPDCS6-9cULoACCkWDI4__pxmKaRdnY_Np0bjxbBnlTYWYU9qbAXFTPydEYaIvqf58ZoIbX4Bc-NWbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comments on "A Controllability Counterexample" and the Continuation Lemma</title><source>IEEE Electronic Library (IEL)</source><creator>Elliott, David L. ; Lin Tie</creator><creatorcontrib>Elliott, David L. ; Lin Tie</creatorcontrib><description>A Technical Note in this journal vol. 50, no. 6, pp. 840-841, June 2005, by Elliott, gives a bilinear example showing that the Euler discretization of a noncontrollable continuous-time system can be controllable. The example is correct, but there was a flaw in a result of the TN, Lemma 1 ("for discrete-time systems, local controllability implies controllability") that has independent interest. In this note, the lemma is reformulated as a conjecture for continuous-in-state systems, and it is also proved under additional conditions. For a class of two-dimensional bilinear systems the Euler discretization is shown directly to be small-controllable, a fortiori controllable.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2014.2352771</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Controllability ; Discrete-time systems ; Nonlinear systems</subject><ispartof>IEEE transactions on automatic control, 2015-04, Vol.60 (4), p.1169-1171</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-51913ac91a6007a62dd0795cd5e1e1344ebac7881d34d70c3c4c7c8a337d00343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6887347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6887347$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elliott, David L.</creatorcontrib><creatorcontrib>Lin Tie</creatorcontrib><title>Comments on "A Controllability Counterexample" and the Continuation Lemma</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A Technical Note in this journal vol. 50, no. 6, pp. 840-841, June 2005, by Elliott, gives a bilinear example showing that the Euler discretization of a noncontrollable continuous-time system can be controllable. The example is correct, but there was a flaw in a result of the TN, Lemma 1 ("for discrete-time systems, local controllability implies controllability") that has independent interest. In this note, the lemma is reformulated as a conjecture for continuous-in-state systems, and it is also proved under additional conditions. For a class of two-dimensional bilinear systems the Euler discretization is shown directly to be small-controllable, a fortiori controllable.</description><subject>Controllability</subject><subject>Discrete-time systems</subject><subject>Nonlinear systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFb3gpvQfeK988hMliH4KATc1PUwnbnFSB4lmYL996a2uDocON9ZfIw9ImSIUDxvyirjgDLjQnGt8YotUCmTcsXFNVsAoEkLbvJbdjdN33PNpcQFW1dD11Efp2Tok1WZVEMfx6Ft3bZpm3ic-6GPNNKP6_YtrRLXhyR-0d-u6Q8uNjNXU9e5e3azc-1ED5dcss_Xl031ntYfb-uqrFPPMY-pwgKF8wW6HEC7nIcAulA-KEJCISVtndfGYBAyaPDCS6-9cULoACCkWDI4__pxmKaRdnY_Np0bjxbBnlTYWYU9qbAXFTPydEYaIvqf58ZoIbX4Bc-NWbI</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Elliott, David L.</creator><creator>Lin Tie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201504</creationdate><title>Comments on "A Controllability Counterexample" and the Continuation Lemma</title><author>Elliott, David L. ; Lin Tie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-51913ac91a6007a62dd0795cd5e1e1344ebac7881d34d70c3c4c7c8a337d00343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Controllability</topic><topic>Discrete-time systems</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, David L.</creatorcontrib><creatorcontrib>Lin Tie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elliott, David L.</au><au>Lin Tie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comments on "A Controllability Counterexample" and the Continuation Lemma</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2015-04</date><risdate>2015</risdate><volume>60</volume><issue>4</issue><spage>1169</spage><epage>1171</epage><pages>1169-1171</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A Technical Note in this journal vol. 50, no. 6, pp. 840-841, June 2005, by Elliott, gives a bilinear example showing that the Euler discretization of a noncontrollable continuous-time system can be controllable. The example is correct, but there was a flaw in a result of the TN, Lemma 1 ("for discrete-time systems, local controllability implies controllability") that has independent interest. In this note, the lemma is reformulated as a conjecture for continuous-in-state systems, and it is also proved under additional conditions. For a class of two-dimensional bilinear systems the Euler discretization is shown directly to be small-controllable, a fortiori controllable.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2014.2352771</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2015-04, Vol.60 (4), p.1169-1171
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_6887347
source IEEE Electronic Library (IEL)
subjects Controllability
Discrete-time systems
Nonlinear systems
title Comments on "A Controllability Counterexample" and the Continuation Lemma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comments%20on%20%22A%20Controllability%20Counterexample%22%20and%20the%20Continuation%20Lemma&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Elliott,%20David%20L.&rft.date=2015-04&rft.volume=60&rft.issue=4&rft.spage=1169&rft.epage=1171&rft.pages=1169-1171&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2014.2352771&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2014_2352771%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6887347&rfr_iscdi=true