Hydrogen Passivation of Laser-Induced Defects for Laser-Doped Silicon Solar Cells
Hydrogen passivation of laser-induced defects (LasID) is shown to be essential for the fabrication of laser-doped solar cells. On first-generation laser-doped selective emitter solar cells where open-circuit voltages were predominately limited by the full-area back surface field, a 10-mV increase an...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2014-11, Vol.4 (6), p.1413-1420 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen passivation of laser-induced defects (LasID) is shown to be essential for the fabrication of laser-doped solar cells. On first-generation laser-doped selective emitter solar cells where open-circuit voltages were predominately limited by the full-area back surface field, a 10-mV increase and 0.4% increase in the pseudo-fill factor were observed through hydrogen passivation of defects generated during the laser doping process, resulting in an efficiency gain of 0.35% absolute. The passivation of such defects becomes of increasing importance when developing higher voltage devices and can result in improvements in implied open-circuit voltage on test structures up to 50 mV. On n-type PERT solar cells, an efficiency gain of 0.7% absolute was demonstrated with increases in open-circuit voltage and pseudo-fill factor by applying a short low-temperature hydrogenation process using only hydrogen within the device. This process was also shown to improve the rear surface passivation, increasing the short-circuit current of approximately 0.2 mA/cm 2 of wavelengths from 950 to 1200 nm compared with that achieved using an Alneal process. Subsequently, an average efficiency of 20.54% was achieved. |
---|---|
ISSN: | 2156-3381 2156-3403 |
DOI: | 10.1109/JPHOTOV.2014.2347804 |