Supporting Heterogeneity in Cyber-Physical Systems Architectures
Cyber-physical systems (CPS) are heterogeneous, because they tightly couple computation, communication, and control along with physical dynamics, which are traditionally considered separately. Without a comprehensive modeling formalism, model-based development of CPS involves using a multitude of mo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2014-12, Vol.59 (12), p.3178-3193 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyber-physical systems (CPS) are heterogeneous, because they tightly couple computation, communication, and control along with physical dynamics, which are traditionally considered separately. Without a comprehensive modeling formalism, model-based development of CPS involves using a multitude of models in a variety of formalisms that capture various aspects of the system design, such as software design, networking design, physical models, and protocol design. Without a rigorous unifying framework, system integration and integration of the analysis results for various models remains ad hoc. In this paper, we propose a multi-view architecture framework that treats models as views of the underlying system structure and uses structural and semantic mappings to ensure consistency and enable system-level verification in a hierarchical and compositional manner. Throughout the paper, the theoretical concepts are illustrated using two examples: a quadrotor and an automotive intersection collision avoidance system. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2014.2351672 |