Circuit Camouflage Integration for Hardware IP Protection

Circuit camouflage technologies can be integrated into standard logic cell developments using traditional CAD tools. Camouflaged logic cells are integrated into a typical design flow using standard front end and back end models. Camouflaged logic cells obfuscate a circuit's function by introduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cocchi, Ronald P., Baukus, James P., Chow, Lap Wai, Wang, Bryan J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Circuit camouflage technologies can be integrated into standard logic cell developments using traditional CAD tools. Camouflaged logic cells are integrated into a typical design flow using standard front end and back end models. Camouflaged logic cells obfuscate a circuit's function by introducing subtle cell design changes at the GDS level. The logic function of a camouflaged logic cell is extremely difficult to determine through silicon imaging analysis preventing netlist extraction, clones and counterfeits. The application of circuit camouflage as part of a customer's design flow can protect hardware IP from reverse engineering. Camouflage fill techniques further inhibit Trojan circuit insertion by completely filling the design with realistic circuitry that does not affect the primary design function. All unused silicon appears to be functional circuitry, so an attacker cannot find space to insert a Trojan circuit. The integration of circuit camouflage techniques is compatible with standard chip design flows and EDA tools, and ICs using such techniques have been successfully employed in high-attack commercial and government segments. Protected under issued and pending patents.
ISSN:0738-100X
DOI:10.1145/2593069.2602554