Design of the Remote Agent experiment for spacecraft autonomy

This paper describes the Remote Agent flight experiment for spacecraft commanding and control. In the Remote Agent approach, the operational rules and constraints are encoded in the flight software. The software may be considered to be an autonomous "remote agent" of the spacecraft operato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bernard, D.E., Dorais, G.A., Fry, C., Gamble, E.B., Kanefsky, B., Kurien, J., Millar, W., Muscettola, N., Nayak, P.P., Pell, B., Rajan, K., Rouquette, N., Smith, B., Williams, B.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the Remote Agent flight experiment for spacecraft commanding and control. In the Remote Agent approach, the operational rules and constraints are encoded in the flight software. The software may be considered to be an autonomous "remote agent" of the spacecraft operators in the sense that the operators rely on the agent to achieve particular goals. The experiment will be executed during the flight of NASA's Deep Space One technology validation mission. During the experiment, the spacecraft will not be given the usual detailed sequence of commands to execute. Instead, the spacecraft will be given a list of goals to achieve during the experiment. In flight, the Remote Agent flight software will generate a plan to accomplish the goals and then execute the plan in a robust manner while keeping track of how well the plan is being accomplished. During plan execution, the Remote Agent stays on the lookout for any hardware faults that might require recovery actions or replanning. In addition to describing the design of the remote agent, this paper discusses technology-insertion challenges and the approach used in the Remote Agent approach to address these challenges. The experiment integrates several spacecraft autonomy technologies developed at NASA Ames and the Jet Propulsion Laboratory: on-board planning, a robust multi threaded executive, and model-based failure diagnosis and recovery.
ISSN:1095-323X
2996-2358
DOI:10.1109/AERO.1998.687914