A Multi-Mode Control Strategy for VAr Support by Solar PV Inverters in Distribution Networks
This paper proposes a multi-purpose VAr control strategy for solar PV inverters for voltage support in distribution networks. The proposed strategy can be applied under various PV power generation conditions. The inverters will normally operate in a dynamic VAr compensation mode for voltage support...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2015-05, Vol.30 (3), p.1316-1326 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a multi-purpose VAr control strategy for solar PV inverters for voltage support in distribution networks. The proposed strategy can be applied under various PV power generation conditions. The inverters will normally operate in a dynamic VAr compensation mode for voltage support (including low PV and no PV periods). During mid-day when PV has surplus power, the proposed strategy will control the PV inverters to absorb VAr for voltage rise mitigation using a droop characteristic approach. During passing clouds, the strategy will mitigate voltage fluctuations by ramp-rate control of inverter VAr output. A dynamic model of the proposed PV inverter control has been developed to analyze its performance in terms of fast VAr control and voltage support under various PV generation conditions. The results of the analysis performed on an Australian distribution system show that the proposed VAr control strategy can mitigate voltage rise, and improve the voltage profile despite potential vast changes in the sun irradiation during passing cloud and also in the absence of PV output during the evening. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2014.2344661 |