Optimal Power Scheduling for Smart Grids Considering Controllable Loads and High Penetration of Photovoltaic Generation
The distributed generator (DG) has a huge economical and environmental potential, especially if it is based on renewable energy sources (RESs). It is very important for the future development of smart grids. However, high penetration of DGs into distribution systems can cause voltage deviations beyo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2014-09, Vol.5 (5), p.2350-2359 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The distributed generator (DG) has a huge economical and environmental potential, especially if it is based on renewable energy sources (RESs). It is very important for the future development of smart grids. However, high penetration of DGs into distribution systems can cause voltage deviations beyond the statutory range, and reverse power flow toward the substation transformer. Consequently, it can increase the distribution system losses if it is not well supervised. Thus, in order to meet smart grid objectives, DGs have to be controlled in coordination with other power resources existing in the distribution system. Controllable loads (CLs) can also help in promoting smart grids through demand response (DR) application. Therefore, this paper proposes a decision technique of an optimal reference schedule for DGs, battery energy storage system (BESS), CLs, and tap changing transformers. The main objective of the proposed optimization problem is to achieve loss reduction in the distribution system. However, other aims such as voltage control and power flow smoothing have been achieved. The optimization is performed based on predicted values of load demand and DG generation. Simulations are conducted for one operation day to illustrate the optimality of the proposed scheduling method and to assess the impact of CLs in smart grids. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2014.2323969 |