Heterogeneous Data Fusion Algorithm for Pedestrian Navigation via Foot-Mounted Inertial Measurement Unit and Complementary Filter

This paper proposes a foot-mounted zero velocity update (ZVU) aided inertial measurement unit (IMU) filtering algorithm for pedestrian tracking in indoor environment. The algorithm outputs are the foot kinematic parameters that include foot orientation, position, velocity, acceleration, and gait pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2015-01, Vol.64 (1), p.221-229
1. Verfasser: Fourati, Hassen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a foot-mounted zero velocity update (ZVU) aided inertial measurement unit (IMU) filtering algorithm for pedestrian tracking in indoor environment. The algorithm outputs are the foot kinematic parameters that include foot orientation, position, velocity, acceleration, and gait phase. The foot motion filtering algorithm incorporates methods for orientation estimation, gait detection, and position estimation. A novel complementary filter is introduced to better preprocess the sensor data from a foot-mounted IMU containing triaxial angular rate sensors, accelerometers, and magnetometers and to estimate the foot orientation without resorting to global positioning system data. A gait detection is accomplished using a simple states detector that transitions between states based on acceleration and angular rate measurements. Once foot orientation is computed, position estimates are obtained using integrating acceleration and velocity data, which has been corrected at step stance phase for drift using an implemented ZVU algorithm, leading to a position accuracy improvement. We show our findings experimentally by using of a commercial IMU during regular human walking trials in a typical public building. Experiment results show that the positioning approach achieves approximately a position accuracy around 0.4% and improves the performance regarding recent works of literature.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2014.2335912