Neural Network-Based Adaptive Dynamic Surface Control for Permanent Magnet Synchronous Motors

This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2015-03, Vol.26 (3), p.640-645
Hauptverfasser: Yu, Jinpeng, Shi, Peng, Dong, Wenjie, Chen, Bing, Lin, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2014.2316289