A Cost-Effective and Efficient Scheme for Optical OFDM in Short-Range IM/DD Systems
We propose a cost-effective and efficient modulation scheme for intensity-modulated and direct-detection (IM/DD) optical orthogonal frequency division multiplexing (O-OFDM) systems, which combines complex-to-real transform (C2RT) and fast Hartley transform (FHT), named as fast-fast Fourier transform...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2014-07, Vol.26 (13), p.1372-1374 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a cost-effective and efficient modulation scheme for intensity-modulated and direct-detection (IM/DD) optical orthogonal frequency division multiplexing (O-OFDM) systems, which combines complex-to-real transform (C2RT) and fast Hartley transform (FHT), named as fast-fast Fourier transform (FFT). The proposed scheme can modulate the complex constellation by the real-valued operations. Compared with the FFT method, the same OFDM signal can also be generated by fast-FFT, but the computational complexity nearly halved. Meanwhile, compared with the FHT scheme, fast-FFT can modulate the complex constellations by adding a simple C2RT module for a wide applicable range. The transmission experiment of over 50-km standard single-mode fiber (SSMF) has been implemented to verify the feasibility of fast-FFT-based IM/DD O-OFDM systems, including asymmetrically clipping and DC-bias O-OFDM systems. It reveals that fast-FFT shares the same bit-error-rate (BER) performance as FFT, but fast-FFT shows superiority on computational complexity. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2014.2325602 |