FEM simulations for built-in reliability of innovative Liquid Crystal Polymer-based QFN packaging and Sn96.5Ag3Cu0.5 solder joint
In this study, Quad Flat No-lead (QFN) cavity package based on LCP and the reliability impact of the package geometry are investigated. A well-established model of Sn96.5Ag3Cu0.5 solder joint fatigue based on the Darveaux's methodology leading to strain energy density estimation is used. A dedi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, Quad Flat No-lead (QFN) cavity package based on LCP and the reliability impact of the package geometry are investigated. A well-established model of Sn96.5Ag3Cu0.5 solder joint fatigue based on the Darveaux's methodology leading to strain energy density estimation is used. A dedicated Design of Experiments (DoE) is performed to assess the optimal thermo-mechanical properties of the LCP package leading to the maximum operating lifetime. A correlation between predicted lifetime results and optimal thermo-mechanical properties of the package is obtained depending on the geometry of the QFN under study. |
---|---|
DOI: | 10.1109/EuroSimE.2014.6813805 |