Delay-Based Reservoir Computing: Noise Effects in a Combined Analog and Digital Implementation

Reservoir computing is a paradigm in machine learning whose processing capabilities rely on the dynamical behavior of recurrent neural networks. We present a mixed analog and digital implementation of this concept with a nonlinear analog electronic circuit as a main computational unit. In our approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2015-02, Vol.26 (2), p.388-393
Hauptverfasser: Soriano, Miguel C., Ortin, Silvia, Keuninckx, Lars, Appeltant, Lennert, Danckaert, Jan, Pesquera, Luis, van der Sande, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reservoir computing is a paradigm in machine learning whose processing capabilities rely on the dynamical behavior of recurrent neural networks. We present a mixed analog and digital implementation of this concept with a nonlinear analog electronic circuit as a main computational unit. In our approach, the reservoir network can be replaced by a single nonlinear element with delay via time-multiplexing. We analyze the influence of noise on the performance of the system for two benchmark tasks: 1) a classification problem and 2) a chaotic time-series prediction task. Special attention is given to the role of quantization noise, which is studied by varying the resolution in the conversion interface between the analog and digital worlds.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2014.2311855