Dual Ion Effect of the Lithium Silicate Resistance Random Access Memory
In this letter, dual ion effect induced reset process of lithium silicate resistance random access memory (RRAM) devices is studied and discussed. Unlike the traditional silicon oxide-based RRAM, lithium ions also participate in the resistive switching process except for the oxygen ions. Owing to th...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2014-05, Vol.35 (5), p.530-532 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, dual ion effect induced reset process of lithium silicate resistance random access memory (RRAM) devices is studied and discussed. Unlike the traditional silicon oxide-based RRAM, lithium ions also participate in the resistive switching process except for the oxygen ions. Owing to the twofold chemical reaction, the high resistance states are randomly distributed in a wide range. Schottky emission can be obtained through conduction current fitting, and a reaction model is established to demonstrate the special behaviors of the two types of ions, which also clarifies the gradual change of current fitting results. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2014.2311295 |