10.4 A 1.22TOPS and 1.52mW/MHz augmented reality multi-core processor with neural network NoC for HMD applications
Augmented reality (AR) is being investigated in advanced displays for the augmentation of images in a real-world environment. Wearable systems, such as head-mounted display (HMD) systems, have attempted to support real-time AR as a next generation UI/UX [1-2], but have failed, due to their limited c...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Augmented reality (AR) is being investigated in advanced displays for the augmentation of images in a real-world environment. Wearable systems, such as head-mounted display (HMD) systems, have attempted to support real-time AR as a next generation UI/UX [1-2], but have failed, due to their limited computing power. In a prior work, a chip with limited AR functionality was reported that could perform AR with the help of markers placed in the environment (usually 1D or 2D bar codes) [3]. However, for a seamless visual experience, 3D objects should be rendered directly on the natural video image without any markers. Unlike marker-based AR, markerless AR requires natural feature extraction, general object recognition, 3D reconstruction, and camera-pose estimation to be performed in parallel. For instance, markerless AR for a VGA input-test video consumes ~1.3W power at 0.2fps throughput, with TI's OMAP4430, which exceeds power limits for wearable devices. Consequently, there is a need for a high-performance energy-efficient markerless AR processor to realize a real-time AR system, especially for HMD applications. |
---|---|
ISSN: | 0193-6530 2376-8606 |
DOI: | 10.1109/ISSCC.2014.6757391 |