Assessing Box Office Performance Using Movie Scripts: A Kernel-Based Approach

We develop a methodology to predict box office performance of a movie at the point of green-lighting, when only its script and estimated production budget are available. We extract three levels of textual features (genre and content, semantics, and bag-of-words) from scripts using screenwriting doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2014-11, Vol.26 (11), p.2639-2648
Hauptverfasser: Eliashberg, Jehoshua, Hui, Sam K., Zhang, Z. John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a methodology to predict box office performance of a movie at the point of green-lighting, when only its script and estimated production budget are available. We extract three levels of textual features (genre and content, semantics, and bag-of-words) from scripts using screenwriting domain knowledge, human input, and natural language processing techniques. These textual variables define a distance metric across scripts, which is then used as an input for a kernel-based approach to assess box office performance. We show that our proposed methodology predicts box office revenues more accurately (29 percent lower mean squared error (MSE)) compared to benchmark methods.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2014.2306681