Assessing Box Office Performance Using Movie Scripts: A Kernel-Based Approach
We develop a methodology to predict box office performance of a movie at the point of green-lighting, when only its script and estimated production budget are available. We extract three levels of textual features (genre and content, semantics, and bag-of-words) from scripts using screenwriting doma...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2014-11, Vol.26 (11), p.2639-2648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a methodology to predict box office performance of a movie at the point of green-lighting, when only its script and estimated production budget are available. We extract three levels of textual features (genre and content, semantics, and bag-of-words) from scripts using screenwriting domain knowledge, human input, and natural language processing techniques. These textual variables define a distance metric across scripts, which is then used as an input for a kernel-based approach to assess box office performance. We show that our proposed methodology predicts box office revenues more accurately (29 percent lower mean squared error (MSE)) compared to benchmark methods. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2014.2306681 |