Divide and Conquer? -Means Clustering of Demand Data Allows Rapid and Accurate Simulations of the British Electricity System

We use a k-means clustering algorithm to partition national electricity demand data for Great Britain and apply a novel profiling method to obtain a set of representative demand profiles for each year over the period 1994-2005. We then use a simulated dispatch model to assess the accuracy of these d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on engineering management 2014-05, Vol.61 (2), p.251-260
Hauptverfasser: Green, Richard, Staffell, Iain, Vasilakos, Nicholas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use a k-means clustering algorithm to partition national electricity demand data for Great Britain and apply a novel profiling method to obtain a set of representative demand profiles for each year over the period 1994-2005. We then use a simulated dispatch model to assess the accuracy of these daily profiles against the complete dataset on a year-to-year basis. We find that the use of data partitioning does not compromise the accuracy of the simulations for most of the main variables considered, even when simulating significant intermittent wind generation. This technique yields 50-fold gains in terms of computational speed, allowing complex Monte Carlo simulations and sensitivity analyses to be performed with modest computing resource.
ISSN:0018-9391
1558-0040
DOI:10.1109/TEM.2013.2284386