Assessing Goal-Directed Three-Dimensional Movements in a Virtual Reality Block Design Task

This study investigated three-dimensional (3D) goal-directed movements in a virtual reality (VR) simulation of a standardized psychomotor control task. Movement trajectories were collected from 22 subjects and parsed based on an existing two-phase model of motor control including ballistic and corre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wooram Jeon, Clamann, Michael, Kaber, David B., Currie, Nancy J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated three-dimensional (3D) goal-directed movements in a virtual reality (VR) simulation of a standardized psychomotor control task. Movement trajectories were collected from 22 subjects and parsed based on an existing two-phase model of motor control including ballistic and correction phases. Kinematic measures were also acquired to provide further insight into motor skill learning. Results revealed kinematic measures of total numbers of sub movements and numbers of sub movements in the correction phase to be significantly correlated with psychomotor task scores. A predictive model applied to the 3D movements revealed the correction phase movements to be more predictive of psychomotor performance than the ballistic phase. Findings indicate a greater degree of fine motor skill was required for performance of the psychomotor control task. This research supports the use of high resolution kinematic measures as reliable predictors of psychomotor task performance.
ISSN:1062-922X
2577-1655
DOI:10.1109/SMC.2013.637