A Learning Classifier System Based on Genetic Network Programming
Recent advances in Learning Classifier Systems (LCSs) have shown their sequential decision-making ability with a generalization property. In this paper, a novel LCS named extended rule-based Genetic Network Programming (XrGNP) is proposed. Different from most of the current LCSs, the rules are repre...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advances in Learning Classifier Systems (LCSs) have shown their sequential decision-making ability with a generalization property. In this paper, a novel LCS named extended rule-based Genetic Network Programming (XrGNP) is proposed. Different from most of the current LCSs, the rules are represented and discovered through a graph-based evolutionary algorithm GNP, which consequently has the distinct expression ability to model and evolve the decision-making rules. XrGNP is described in details in which its unique features are explicitly mapped. Experiments on benchmark and real-world multi-step problems demonstrate the effectiveness of XrGNP. |
---|---|
ISSN: | 1062-922X 2577-1655 |
DOI: | 10.1109/SMC.2013.229 |