Real-time adjustment of power management policy for a time-based power control architecture

As state-of-the-art mobile devices are demanded for high performance and attractive designs, system-on-chips have been integrated with many functional blocks into a single chip to reduce the chip size, cost, and power consumption. In this paper, to reduce power consumption of heterogeneous processor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soo-Yong Kim, Chaehag Yi, Scherrer, Tomas, Suk Won Kim, Keunhwi Koo, Sang Woo Kim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As state-of-the-art mobile devices are demanded for high performance and attractive designs, system-on-chips have been integrated with many functional blocks into a single chip to reduce the chip size, cost, and power consumption. In this paper, to reduce power consumption of heterogeneous processor, a power management algorithm is proposed with a time-based power control architecture which autonomously performs voltage/clock scaling operations without the intervention of the processors. The proposed algorithm has adaptively adjusted time-threshold levels for voltage/clock control to minimize the power consumption and work in severe time-constraints for real-time processing. The real-time adjustment makes robust performance of the power consumption guarantee regardless of patterns of data traffic and diverse application programs. To show performance of the proposed, they are adopted to an application processor integrated with a communication processor for smartphones. Via electronic system-level simulation, it is shown that the proposed algorithm reduces the power consumption by approximately 40%.
ISSN:1553-572X
DOI:10.1109/IECON.2013.6699492