Virtual whiskers - Highly responsive robot collision avoidance

All mammals but humans use whiskers in order to rapidly acquire information about objects in the vicinity of the head. Collisions of the head and objects can be avoided as the contact point is moved from the body surface to the whiskers. Such a behavior is also highly desirable during many robot tas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schlegl, Thomas, Kroger, Torsten, Gaschler, Andre, Khatib, Oussama, Zangl, Hubert
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All mammals but humans use whiskers in order to rapidly acquire information about objects in the vicinity of the head. Collisions of the head and objects can be avoided as the contact point is moved from the body surface to the whiskers. Such a behavior is also highly desirable during many robot tasks such as for human-robot interaction. Using novel capacitive proximity sensors, robots sense when they approach a human (or an object) and react before they actually collide with it. We propose a sensor and control concept that mimics the behavior of whiskers by means of capacitive sensors. Major advantages are the absence of physical whiskers, the absence of blind spots and a very short response time. The sensors are flexible and thin so that they feature skin-like properties and can be attached to various robotic link and joint shapes. In comparison to capacitive proximity sensors, the proposed virtual whiskers offer better sensitivity towards small conductive as well as non conductive objects. Equipped with the new proximity sensors, a seven-joint robot for human-robot interaction tasks shows the efficiency and responsiveness of our concept.
ISSN:2153-0858
2153-0866
DOI:10.1109/IROS.2013.6697134