Finding planes in LiDAR point clouds for real-time registration
We present a robust plane finding algorithm that when combined with plane-based frame-to-frame registration gives accurate real-time pose estimation. Our plane extraction is capable of handling large and sparse datasets such as those generated from spinning multi-laser sensors such as the Velodyne H...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a robust plane finding algorithm that when combined with plane-based frame-to-frame registration gives accurate real-time pose estimation. Our plane extraction is capable of handling large and sparse datasets such as those generated from spinning multi-laser sensors such as the Velodyne HDL-32E LiDAR. We test our algorithm on frame-to-frame registration in a closed-loop indoor path comprising 827 successive 3D laser scans (over 57 million points), using no additional information (e.g., odometry, IMU). Our algorithm outperforms, in both accuracy and time, three state-of-the-art methods, based on iterative closest point (ICP), plane-based randomized Hough transform, and planar region growing. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2013.6696980 |