Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size
Set-membership identification (SMI) theory is extended to the more general problem of linear-in-parameters filtering by defining a set-membership specification, as opposed to a bounded noise assumption. This sets the framework for several important filtering problems that are not modeled by a "...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 1998-05, Vol.5 (5), p.111-114 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Set-membership identification (SMI) theory is extended to the more general problem of linear-in-parameters filtering by defining a set-membership specification, as opposed to a bounded noise assumption. This sets the framework for several important filtering problems that are not modeled by a "true" unknown system with bounded noise, such as adaptive equalization, to exploit the unique advantages of SMI algorithms. A recursive solution for set membership filtering is derived that resembles a variable step size normalized least mean squares (NLMS) algorithm. Interesting properties of the algorithm, such as asymptotic cessation of updates and monotonically non-increasing parameter error, are established. Simulations show significant performance improvement in varied environments with a greatly reduced number of updates. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/97.668945 |