Accelerating sparse matrix-matrix multiplication with 3D-stacked logic-in-memory hardware

This paper introduces a 3D-stacked logic-in-memory (LiM) system to accelerate the processing of sparse matrix data that is held in a 3D DRAM system. We build a customized content addressable memory (CAM) hardware structure to exploit the inherent sparse data patterns and model the LiM based hardware...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qiuling Zhu, Graf, Tobias, Sumbul, H. Ekin, Pileggi, Larry, Franchetti, Franz
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a 3D-stacked logic-in-memory (LiM) system to accelerate the processing of sparse matrix data that is held in a 3D DRAM system. We build a customized content addressable memory (CAM) hardware structure to exploit the inherent sparse data patterns and model the LiM based hardware accelerator layers that are stacked in between DRAM dies for the efficient sparse matrix operations. Through silicon vias (TSVs) are used to provide the required high inter-layer bandwidth. Furthermore, we adapt the algorithm and data structure to fully leverage the underlying hardware capabilities, and develop the necessary design framework to facilitate the design space evaluation and LiM hardware synthesis. Our simulation demonstrates more than two orders of magnitude of performance and energy efficiency improvements compared with the traditional multithreaded software implementation on modern processors.
DOI:10.1109/HPEC.2013.6670336