Modeling car crash management with KAOS

Getting the right software requirements under the right environment assumptions is a critical precondition for developing the right software. KAOS is a goal-driven, model-based approach for elaborating a complete, adequate, consistent, and well-structured set of measurable software requirements and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cailliau, Antoine, Damas, Christophe, Lambeau, Bernard, van Lamsweerde, Axel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Getting the right software requirements under the right environment assumptions is a critical precondition for developing the right software. KAOS is a goal-driven, model-based approach for elaborating a complete, adequate, consistent, and well-structured set of measurable software requirements and environment assumptions. The modeling language and method cover the intentional, structural, functional, and behavioral facets of the target system. Declarative and operational sub-models are integrated. Semi-formal and formal techniques complement each other for model construction, analysis and evolution. They support early and incremental reasoning on partial models for a variety of purposes including goal satisfaction arguments, property checks, animations, the evaluation of alternative options, the analysis of risks, threats and conflicts, and traceability management. The paper illustrates the modeling language and method on a car crash management case study. The overall produced model integrates the goal, object, agent, operation and behavior submodels of the system. The paper outlines some of the features supported by KAOS for incremental model elaboration, including goal identification and refinement, the structuring of domain concepts, risk analysis for increased requirements completeness, goal operationalization, the derivation of agent interfaces and the derivation of state machine behavior models.
DOI:10.1109/CMA-RE.2013.6664180