Informed separation of spatial images of stereo music recordings using second-order statistics

In this work we address a reverse audio engineering problem, i.e. the separation of stereo tracks of professionally produced music recordings. More precisely, we apply a spatial filtering approach with a quadratic constraint using an explicit source-image-mixture model. The model parameters are &quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gorlow, Stanislaw, Marchand, Sylvain
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we address a reverse audio engineering problem, i.e. the separation of stereo tracks of professionally produced music recordings. More precisely, we apply a spatial filtering approach with a quadratic constraint using an explicit source-image-mixture model. The model parameters are "learned" from a given set of original stereo tracks, reduced in size and used afterwards to demix the desired tracks in best possible quality from a preexisting mixture. Our approach implicates a side-information rate of 10 kbps per source or channel and has a low computational complexity. The results obtained for the SiSEC 2013 dataset are intended to be used as reference for comparison with unpublished approaches.
ISSN:1551-2541
2378-928X
DOI:10.1109/MLSP.2013.6661915