Informed separation of spatial images of stereo music recordings using second-order statistics
In this work we address a reverse audio engineering problem, i.e. the separation of stereo tracks of professionally produced music recordings. More precisely, we apply a spatial filtering approach with a quadratic constraint using an explicit source-image-mixture model. The model parameters are &quo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we address a reverse audio engineering problem, i.e. the separation of stereo tracks of professionally produced music recordings. More precisely, we apply a spatial filtering approach with a quadratic constraint using an explicit source-image-mixture model. The model parameters are "learned" from a given set of original stereo tracks, reduced in size and used afterwards to demix the desired tracks in best possible quality from a preexisting mixture. Our approach implicates a side-information rate of 10 kbps per source or channel and has a low computational complexity. The results obtained for the SiSEC 2013 dataset are intended to be used as reference for comparison with unpublished approaches. |
---|---|
ISSN: | 1551-2541 2378-928X |
DOI: | 10.1109/MLSP.2013.6661915 |