Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process?

Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Here we focus on the family of Gibbs-type priors, a recent elegant generalization of the Dirichlet and the Pitma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-02, Vol.37 (2), p.212-229
Hauptverfasser: De Blasi, Pierpaolo, Favaro, Stefano, Lijoi, Antonio, Mena, Ramses H., Prunster, Igor, Ruggiero, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discrete random probability measures and the exchangeable random partitions they induce are key tools for addressing a variety of estimation and prediction problems in Bayesian inference. Here we focus on the family of Gibbs-type priors, a recent elegant generalization of the Dirichlet and the Pitman-Yor process priors. These random probability measures share properties that are appealing both from a theoretical and an applied point of view: (i) they admit an intuitive predictive characterization justifying their use in terms of a precise assumption on the learning mechanism; (ii) they stand out in terms of mathematical tractability; (iii) they include several interesting special cases besides the Dirichlet and the Pitman-Yor processes. The goal of our paper is to provide a systematic and unified treatment of Gibbs-type priors and highlight their implications for Bayesian nonparametric inference. We deal with their distributional properties, the resulting estimators, frequentist asymptotic validation and the construction of time-dependent versions. Applications, mainly concerning mixture models and species sampling, serve to convey the main ideas. The intuition inherent to this class of priors and the neat results they lead to make one wonder whether it actually represents the most natural generalization of the Dirichlet process.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2013.217