Memetic algorithms for Cross-domain Heuristic Search
Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the inter...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | |
container_start_page | 175 |
container_title | |
container_volume | |
creator | Ozcan, Ender Asta, Shahriar Altintas, Cevriye |
description | Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the interaction of a fixed set of low level heuristics (operators) during the search process. The Java implementation of HyFlex along with different problem domains was recently used in a competition, referred to as Cross-domain Heuristic Search Challenge (CHeSC2011). CHeSC2011 sought for the best selection hyper-heuristic with the best median performance over a set of instances from six different problem domains. Each problem domain implementation contained four different types of operators, namely mutation, ruin-recreate, hill climbing and crossover. CHeSC2011 including the competing hyper-heuristic methods currently serves as a benchmark for hyper-heuristic research. Considering the type of the operators implemented under the HyFlex framework, CHeSC2011 could also be used as a benchmark to empirically compare the performance of appropriate variants of the evolutionary computation methods across a variety of problem domains for discrete optimisation. In this study, we investigate the performance and generality level of generic steady-state and transgenerational memetic algorithms which hybridize genetic algorithms with hill climbing across six problem domains of the CHeSC2011 benchmark. |
doi_str_mv | 10.1109/UKCI.2013.6651303 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6651303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6651303</ieee_id><sourcerecordid>6651303</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-2291ceffa64b51a14f02fe469ad40c1cb9229193cd781379e2c716c2d0fbe6d23</originalsourceid><addsrcrecordid>eNotj8FKAzEUACMoWGs_QLzsD-yal2RfkqMsaouVHmrPJZu82EjXlWQ9-PdS7Gkuw8Awdge8AeD2YffarRrBQTaILUguL9gNKG0ttIhwyWYCUNQaW33NFqV8cs4lGGNQz5h6o4Gm5Ct3_Bhzmg5DqeKYqy6PpdRhHFz6qpb0k1M5WVty2R9u2VV0x0KLM-ds9_z03i3r9eZl1T2u6yTATLUQFjzF6FD1LThQkYtICq0LinvwvT0ZVvqgDUhtSXgN6EXgsScMQs7Z_X83EdH-O6fB5d_9eVL-AfB0RSQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Memetic algorithms for Cross-domain Heuristic Search</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ozcan, Ender ; Asta, Shahriar ; Altintas, Cevriye</creator><creatorcontrib>Ozcan, Ender ; Asta, Shahriar ; Altintas, Cevriye</creatorcontrib><description>Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the interaction of a fixed set of low level heuristics (operators) during the search process. The Java implementation of HyFlex along with different problem domains was recently used in a competition, referred to as Cross-domain Heuristic Search Challenge (CHeSC2011). CHeSC2011 sought for the best selection hyper-heuristic with the best median performance over a set of instances from six different problem domains. Each problem domain implementation contained four different types of operators, namely mutation, ruin-recreate, hill climbing and crossover. CHeSC2011 including the competing hyper-heuristic methods currently serves as a benchmark for hyper-heuristic research. Considering the type of the operators implemented under the HyFlex framework, CHeSC2011 could also be used as a benchmark to empirically compare the performance of appropriate variants of the evolutionary computation methods across a variety of problem domains for discrete optimisation. In this study, we investigate the performance and generality level of generic steady-state and transgenerational memetic algorithms which hybridize genetic algorithms with hill climbing across six problem domains of the CHeSC2011 benchmark.</description><identifier>ISSN: 2162-7657</identifier><identifier>EISBN: 1479915661</identifier><identifier>EISBN: 9781479915682</identifier><identifier>EISBN: 9781479915668</identifier><identifier>EISBN: 1479915688</identifier><identifier>DOI: 10.1109/UKCI.2013.6651303</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Benchmark testing ; Heuristic algorithms ; Memetics ; Search problems ; Sociology ; Statistics</subject><ispartof>2013 13th UK Workshop on Computational Intelligence (UKCI), 2013, p.175-182</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6651303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6651303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ozcan, Ender</creatorcontrib><creatorcontrib>Asta, Shahriar</creatorcontrib><creatorcontrib>Altintas, Cevriye</creatorcontrib><title>Memetic algorithms for Cross-domain Heuristic Search</title><title>2013 13th UK Workshop on Computational Intelligence (UKCI)</title><addtitle>UKCI</addtitle><description>Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the interaction of a fixed set of low level heuristics (operators) during the search process. The Java implementation of HyFlex along with different problem domains was recently used in a competition, referred to as Cross-domain Heuristic Search Challenge (CHeSC2011). CHeSC2011 sought for the best selection hyper-heuristic with the best median performance over a set of instances from six different problem domains. Each problem domain implementation contained four different types of operators, namely mutation, ruin-recreate, hill climbing and crossover. CHeSC2011 including the competing hyper-heuristic methods currently serves as a benchmark for hyper-heuristic research. Considering the type of the operators implemented under the HyFlex framework, CHeSC2011 could also be used as a benchmark to empirically compare the performance of appropriate variants of the evolutionary computation methods across a variety of problem domains for discrete optimisation. In this study, we investigate the performance and generality level of generic steady-state and transgenerational memetic algorithms which hybridize genetic algorithms with hill climbing across six problem domains of the CHeSC2011 benchmark.</description><subject>Algorithm design and analysis</subject><subject>Benchmark testing</subject><subject>Heuristic algorithms</subject><subject>Memetics</subject><subject>Search problems</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2162-7657</issn><isbn>1479915661</isbn><isbn>9781479915682</isbn><isbn>9781479915668</isbn><isbn>1479915688</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKAzEUACMoWGs_QLzsD-yal2RfkqMsaouVHmrPJZu82EjXlWQ9-PdS7Gkuw8Awdge8AeD2YffarRrBQTaILUguL9gNKG0ttIhwyWYCUNQaW33NFqV8cs4lGGNQz5h6o4Gm5Ct3_Bhzmg5DqeKYqy6PpdRhHFz6qpb0k1M5WVty2R9u2VV0x0KLM-ds9_z03i3r9eZl1T2u6yTATLUQFjzF6FD1LThQkYtICq0LinvwvT0ZVvqgDUhtSXgN6EXgsScMQs7Z_X83EdH-O6fB5d_9eVL-AfB0RSQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Ozcan, Ender</creator><creator>Asta, Shahriar</creator><creator>Altintas, Cevriye</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20130101</creationdate><title>Memetic algorithms for Cross-domain Heuristic Search</title><author>Ozcan, Ender ; Asta, Shahriar ; Altintas, Cevriye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-2291ceffa64b51a14f02fe469ad40c1cb9229193cd781379e2c716c2d0fbe6d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Benchmark testing</topic><topic>Heuristic algorithms</topic><topic>Memetics</topic><topic>Search problems</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozcan, Ender</creatorcontrib><creatorcontrib>Asta, Shahriar</creatorcontrib><creatorcontrib>Altintas, Cevriye</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozcan, Ender</au><au>Asta, Shahriar</au><au>Altintas, Cevriye</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Memetic algorithms for Cross-domain Heuristic Search</atitle><btitle>2013 13th UK Workshop on Computational Intelligence (UKCI)</btitle><stitle>UKCI</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>175</spage><epage>182</epage><pages>175-182</pages><issn>2162-7657</issn><eisbn>1479915661</eisbn><eisbn>9781479915682</eisbn><eisbn>9781479915668</eisbn><eisbn>1479915688</eisbn><abstract>Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the interaction of a fixed set of low level heuristics (operators) during the search process. The Java implementation of HyFlex along with different problem domains was recently used in a competition, referred to as Cross-domain Heuristic Search Challenge (CHeSC2011). CHeSC2011 sought for the best selection hyper-heuristic with the best median performance over a set of instances from six different problem domains. Each problem domain implementation contained four different types of operators, namely mutation, ruin-recreate, hill climbing and crossover. CHeSC2011 including the competing hyper-heuristic methods currently serves as a benchmark for hyper-heuristic research. Considering the type of the operators implemented under the HyFlex framework, CHeSC2011 could also be used as a benchmark to empirically compare the performance of appropriate variants of the evolutionary computation methods across a variety of problem domains for discrete optimisation. In this study, we investigate the performance and generality level of generic steady-state and transgenerational memetic algorithms which hybridize genetic algorithms with hill climbing across six problem domains of the CHeSC2011 benchmark.</abstract><pub>IEEE</pub><doi>10.1109/UKCI.2013.6651303</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-7657 |
ispartof | 2013 13th UK Workshop on Computational Intelligence (UKCI), 2013, p.175-182 |
issn | 2162-7657 |
language | eng |
recordid | cdi_ieee_primary_6651303 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Benchmark testing Heuristic algorithms Memetics Search problems Sociology Statistics |
title | Memetic algorithms for Cross-domain Heuristic Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Memetic%20algorithms%20for%20Cross-domain%20Heuristic%20Search&rft.btitle=2013%2013th%20UK%20Workshop%20on%20Computational%20Intelligence%20(UKCI)&rft.au=Ozcan,%20Ender&rft.date=2013-01-01&rft.spage=175&rft.epage=182&rft.pages=175-182&rft.issn=2162-7657&rft_id=info:doi/10.1109/UKCI.2013.6651303&rft_dat=%3Cieee_6IE%3E6651303%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479915661&rft.eisbn_list=9781479915682&rft.eisbn_list=9781479915668&rft.eisbn_list=1479915688&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6651303&rfr_iscdi=true |