Memetic algorithms for Cross-domain Heuristic Search

Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ozcan, Ender, Asta, Shahriar, Altintas, Cevriye
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyper-heuristic Flexible Framework (HyFlex) is an interface designed to enable the development, testing and comparison of iterative general-purpose heuristic search algorithms, particularly selection hyper-heuristics. A selection hyper-heuristic is a high level methodology that coordinates the interaction of a fixed set of low level heuristics (operators) during the search process. The Java implementation of HyFlex along with different problem domains was recently used in a competition, referred to as Cross-domain Heuristic Search Challenge (CHeSC2011). CHeSC2011 sought for the best selection hyper-heuristic with the best median performance over a set of instances from six different problem domains. Each problem domain implementation contained four different types of operators, namely mutation, ruin-recreate, hill climbing and crossover. CHeSC2011 including the competing hyper-heuristic methods currently serves as a benchmark for hyper-heuristic research. Considering the type of the operators implemented under the HyFlex framework, CHeSC2011 could also be used as a benchmark to empirically compare the performance of appropriate variants of the evolutionary computation methods across a variety of problem domains for discrete optimisation. In this study, we investigate the performance and generality level of generic steady-state and transgenerational memetic algorithms which hybridize genetic algorithms with hill climbing across six problem domains of the CHeSC2011 benchmark.
ISSN:2162-7657
DOI:10.1109/UKCI.2013.6651303