Multi-objective tradeoffs in the design optimization of a brushless permanent magnet machine with fractional-slot concentrated windings
In this paper, a robust parametric model of a brushless (BL) permanent magnet (PM) machine with fractional-slot concentrated windings (FSCW), which was developed for automated design optimization is presented. A computationally efficient-finite element analysis (CE-FEA) method was employed to estima...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a robust parametric model of a brushless (BL) permanent magnet (PM) machine with fractional-slot concentrated windings (FSCW), which was developed for automated design optimization is presented. A computationally efficient-finite element analysis (CE-FEA) method was employed to estimate the dq-axes inductances, the induced voltage and torque ripple waveforms, and losses of the machine. A method for minimum effort calculation of the torque angle corresponding to the maximum torque per ampere (MTPA) load condition was developed. A differential evolution (DE) algorithm was implemented for the global design optimization with two concurrent objectives of minimum losses and minimum material cost. An engineering decision process based on the Pareto-optimal front for 3,500 candidate designs is presented together with discussions on the tradeoffs between cost and performance. One optimal design was finally selected, prototyped and tested. |
---|---|
ISSN: | 2329-3721 2329-3748 |
DOI: | 10.1109/ECCE.2013.6647070 |