A convolution and product theorem for the fractional Fourier transform

The fractional Fourier transform (FRFT), which is a generalization of the Fourier transform, has many applications in several areas, including signal processing and optics. Almeida (see ibid., vol.4, p.15-17, 1997) and Mendlovic et al. (see Appl. Opt., vol.34, p.303-9, 1995) derived fractional Fouri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 1998-04, Vol.5 (4), p.101-103
1. Verfasser: Zayed, A.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fractional Fourier transform (FRFT), which is a generalization of the Fourier transform, has many applications in several areas, including signal processing and optics. Almeida (see ibid., vol.4, p.15-17, 1997) and Mendlovic et al. (see Appl. Opt., vol.34, p.303-9, 1995) derived fractional Fourier transforms of a product and of a convolution of two functions. Unfortunately, their convolution formulas do not generalize very well the classical result for the Fourier transform, which states that the Fourier transform of the convolution of two functions is the product of their Fourier transforms. This paper introduces a new convolution structure for the FRFT that preserves the convolution theorem for the Fourier transform and is also easy to implement in the designing of filters.
ISSN:1070-9908
1558-2361
DOI:10.1109/97.664179