Mapping and Scheduling of Tasks and Communications on Many-Core SoC Under Local Memory Constraint

There has been extensive research on mapping and scheduling tasks on a many-core SoC. However, none considers the optimization of communication types, which can significantly affect performance, energy consumption, and local memory usage of the SoC. This paper presents an approach to automatic mappi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2013-11, Vol.32 (11), p.1748-1761
Hauptverfasser: Jinho Lee, Moo-Kyoung Chung, Yeon-Gon Cho, Soojung Ryu, Jung Ho Ahn, Kiyoung Choi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1761
container_issue 11
container_start_page 1748
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 32
creator Jinho Lee
Moo-Kyoung Chung
Yeon-Gon Cho
Soojung Ryu
Jung Ho Ahn
Kiyoung Choi
description There has been extensive research on mapping and scheduling tasks on a many-core SoC. However, none considers the optimization of communication types, which can significantly affect performance, energy consumption, and local memory usage of the SoC. This paper presents an approach to automatic mapping and scheduling of tasks and communications on a many-core SoC. The key idea is to decide the type of each communication between message passing and shared memory when we do the mapping and scheduling. By assigning a proper type to each communication, we can optimize the energy consumption, performance, or energy-delay product. To solve the optimization problem, the approach adopts a probabilistic algorithm coupled with some heuristics. To enhance throughput of the system, it performs software pipelined scheduling of the tasks using a modified iterative modulo scheduling technique. Experiments show that our algorithm achieves on average 50.1% lower energy consumption, 21.0% higher throughput, and 64.9% lower energy- delay product, compared to shared memory only communication.
doi_str_mv 10.1109/TCAD.2013.2266405
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6634549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6634549</ieee_id><sourcerecordid>10_1109_TCAD_2013_2266405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-bcc21a0e69bff64ee14e5ae8d36383bcdf2ba5e6bb9c43920464f6c1d13475883</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNfyDF41eSZRWeUisWbdeR44wh0NiVnS769zS0YjW6o3vu4hByD2wGwMrHdTV_mnEGYsa51pKpCzKBUuSZBAWXZMJ4XmSM5eya3KT0zRhIxcsJMUuz23X-kxrf0pX9wna_HWNwdG3ST_r7V6Hv976zZuiCTzR4ujT-kFUhIl2Fim58i5EugjVbusQ-xMMR8WmIpvPDLblyZpvw7nynZPPyvK7essXH63s1X2SWazVkjbUcDENdNs5piQgSlcGiFVoUorGt441RqJumtFKUnEktnbbQgpC5KgoxJXDatTGkFNHVu9j1Jh5qYPXoqB4d1aOj-uzoyDycmA4R__taC6lkKX4BDYBjdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping and Scheduling of Tasks and Communications on Many-Core SoC Under Local Memory Constraint</title><source>IEEE Electronic Library (IEL)</source><creator>Jinho Lee ; Moo-Kyoung Chung ; Yeon-Gon Cho ; Soojung Ryu ; Jung Ho Ahn ; Kiyoung Choi</creator><creatorcontrib>Jinho Lee ; Moo-Kyoung Chung ; Yeon-Gon Cho ; Soojung Ryu ; Jung Ho Ahn ; Kiyoung Choi</creatorcontrib><description>There has been extensive research on mapping and scheduling tasks on a many-core SoC. However, none considers the optimization of communication types, which can significantly affect performance, energy consumption, and local memory usage of the SoC. This paper presents an approach to automatic mapping and scheduling of tasks and communications on a many-core SoC. The key idea is to decide the type of each communication between message passing and shared memory when we do the mapping and scheduling. By assigning a proper type to each communication, we can optimize the energy consumption, performance, or energy-delay product. To solve the optimization problem, the approach adopts a probabilistic algorithm coupled with some heuristics. To enhance throughput of the system, it performs software pipelined scheduling of the tasks using a modified iterative modulo scheduling technique. Experiments show that our algorithm achieves on average 50.1% lower energy consumption, 21.0% higher throughput, and 64.9% lower energy- delay product, compared to shared memory only communication.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2013.2266405</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy consumption ; Many-core ; mapping ; memory constraint ; Memory management ; Message passing ; network-on-chip ; Processor scheduling ; Scheduling ; System-on-chip</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2013-11, Vol.32 (11), p.1748-1761</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-bcc21a0e69bff64ee14e5ae8d36383bcdf2ba5e6bb9c43920464f6c1d13475883</citedby><cites>FETCH-LOGICAL-c265t-bcc21a0e69bff64ee14e5ae8d36383bcdf2ba5e6bb9c43920464f6c1d13475883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6634549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6634549$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jinho Lee</creatorcontrib><creatorcontrib>Moo-Kyoung Chung</creatorcontrib><creatorcontrib>Yeon-Gon Cho</creatorcontrib><creatorcontrib>Soojung Ryu</creatorcontrib><creatorcontrib>Jung Ho Ahn</creatorcontrib><creatorcontrib>Kiyoung Choi</creatorcontrib><title>Mapping and Scheduling of Tasks and Communications on Many-Core SoC Under Local Memory Constraint</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>There has been extensive research on mapping and scheduling tasks on a many-core SoC. However, none considers the optimization of communication types, which can significantly affect performance, energy consumption, and local memory usage of the SoC. This paper presents an approach to automatic mapping and scheduling of tasks and communications on a many-core SoC. The key idea is to decide the type of each communication between message passing and shared memory when we do the mapping and scheduling. By assigning a proper type to each communication, we can optimize the energy consumption, performance, or energy-delay product. To solve the optimization problem, the approach adopts a probabilistic algorithm coupled with some heuristics. To enhance throughput of the system, it performs software pipelined scheduling of the tasks using a modified iterative modulo scheduling technique. Experiments show that our algorithm achieves on average 50.1% lower energy consumption, 21.0% higher throughput, and 64.9% lower energy- delay product, compared to shared memory only communication.</description><subject>Energy consumption</subject><subject>Many-core</subject><subject>mapping</subject><subject>memory constraint</subject><subject>Memory management</subject><subject>Message passing</subject><subject>network-on-chip</subject><subject>Processor scheduling</subject><subject>Scheduling</subject><subject>System-on-chip</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNfyDF41eSZRWeUisWbdeR44wh0NiVnS769zS0YjW6o3vu4hByD2wGwMrHdTV_mnEGYsa51pKpCzKBUuSZBAWXZMJ4XmSM5eya3KT0zRhIxcsJMUuz23X-kxrf0pX9wna_HWNwdG3ST_r7V6Hv976zZuiCTzR4ujT-kFUhIl2Fim58i5EugjVbusQ-xMMR8WmIpvPDLblyZpvw7nynZPPyvK7essXH63s1X2SWazVkjbUcDENdNs5piQgSlcGiFVoUorGt441RqJumtFKUnEktnbbQgpC5KgoxJXDatTGkFNHVu9j1Jh5qYPXoqB4d1aOj-uzoyDycmA4R__taC6lkKX4BDYBjdw</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Jinho Lee</creator><creator>Moo-Kyoung Chung</creator><creator>Yeon-Gon Cho</creator><creator>Soojung Ryu</creator><creator>Jung Ho Ahn</creator><creator>Kiyoung Choi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131101</creationdate><title>Mapping and Scheduling of Tasks and Communications on Many-Core SoC Under Local Memory Constraint</title><author>Jinho Lee ; Moo-Kyoung Chung ; Yeon-Gon Cho ; Soojung Ryu ; Jung Ho Ahn ; Kiyoung Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-bcc21a0e69bff64ee14e5ae8d36383bcdf2ba5e6bb9c43920464f6c1d13475883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Energy consumption</topic><topic>Many-core</topic><topic>mapping</topic><topic>memory constraint</topic><topic>Memory management</topic><topic>Message passing</topic><topic>network-on-chip</topic><topic>Processor scheduling</topic><topic>Scheduling</topic><topic>System-on-chip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jinho Lee</creatorcontrib><creatorcontrib>Moo-Kyoung Chung</creatorcontrib><creatorcontrib>Yeon-Gon Cho</creatorcontrib><creatorcontrib>Soojung Ryu</creatorcontrib><creatorcontrib>Jung Ho Ahn</creatorcontrib><creatorcontrib>Kiyoung Choi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jinho Lee</au><au>Moo-Kyoung Chung</au><au>Yeon-Gon Cho</au><au>Soojung Ryu</au><au>Jung Ho Ahn</au><au>Kiyoung Choi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping and Scheduling of Tasks and Communications on Many-Core SoC Under Local Memory Constraint</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>32</volume><issue>11</issue><spage>1748</spage><epage>1761</epage><pages>1748-1761</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>There has been extensive research on mapping and scheduling tasks on a many-core SoC. However, none considers the optimization of communication types, which can significantly affect performance, energy consumption, and local memory usage of the SoC. This paper presents an approach to automatic mapping and scheduling of tasks and communications on a many-core SoC. The key idea is to decide the type of each communication between message passing and shared memory when we do the mapping and scheduling. By assigning a proper type to each communication, we can optimize the energy consumption, performance, or energy-delay product. To solve the optimization problem, the approach adopts a probabilistic algorithm coupled with some heuristics. To enhance throughput of the system, it performs software pipelined scheduling of the tasks using a modified iterative modulo scheduling technique. Experiments show that our algorithm achieves on average 50.1% lower energy consumption, 21.0% higher throughput, and 64.9% lower energy- delay product, compared to shared memory only communication.</abstract><pub>IEEE</pub><doi>10.1109/TCAD.2013.2266405</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2013-11, Vol.32 (11), p.1748-1761
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_6634549
source IEEE Electronic Library (IEL)
subjects Energy consumption
Many-core
mapping
memory constraint
Memory management
Message passing
network-on-chip
Processor scheduling
Scheduling
System-on-chip
title Mapping and Scheduling of Tasks and Communications on Many-Core SoC Under Local Memory Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20and%20Scheduling%20of%20Tasks%20and%20Communications%20on%20Many-Core%20SoC%20Under%20Local%20Memory%20Constraint&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Jinho%20Lee&rft.date=2013-11-01&rft.volume=32&rft.issue=11&rft.spage=1748&rft.epage=1761&rft.pages=1748-1761&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2013.2266405&rft_dat=%3Ccrossref_RIE%3E10_1109_TCAD_2013_2266405%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6634549&rfr_iscdi=true