Online Forum Post Opinion Classification Based on Tree Conditional Random Fields Model
There is a major defect when using the traditional topic-opinion model for post opinion classifications in an online forum discussion.The accuracy of the classification based on the topic-opinion model highly depends on the observable topic-opinion features aiming at the subject,while a large number...
Gespeichert in:
Veröffentlicht in: | China communications 2013-08, Vol.10 (8), p.125-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a major defect when using the traditional topic-opinion model for post opinion classifications in an online forum discussion.The accuracy of the classification based on the topic-opinion model highly depends on the observable topic-opinion features aiming at the subject,while a large number of posts do not have such features in a forum.Therefore,for the most part,the accuracy is less than 78%.To solve this problem,we propose a new method to identify post opinions based on the Tree Conditional Random Fields(T-CRFs)model.First,we select the topic-opinion features of the posts and associated opinion features between posts to construct the T-CRFs model,and then we use the T-CRFs model to label the opinions of the tree-structured posts under the same topic iteratively to reach a maximum joint probability.To reduce the training cost,we design a simplified tree diagram module and some feature templates.Experimental results suggest the proposed method costs less training time and improves the accuracy by 11%. |
---|---|
ISSN: | 1673-5447 |
DOI: | 10.1109/CC.2013.6633751 |