Multi-processor architecture for a versatile autonomous robot
This paper presents a versatile, multi-role robotic platform optimized for advanced motion in line-following scenarios with application to robotic contests, education and specialized tasks. Generally, academic robotic platforms either provide only basic motion features, or are too specialized. Our p...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a versatile, multi-role robotic platform optimized for advanced motion in line-following scenarios with application to robotic contests, education and specialized tasks. Generally, academic robotic platforms either provide only basic motion features, or are too specialized. Our platform's goal is to be sufficiently versatile to be adapted easily to any task, but to provide performance in common scenarios. For this aim, our modular system is comprised of a Mecanum-wheel based omnidirectional motion system with a dense array of line sensors. The system comprises other sensors and actuators, which can be replaced or augmented with more specialized sensors and mechanical systems for each application. We demonstrate our platform in a contest scenario. |
---|---|
DOI: | 10.1109/IcConSCS.2013.6632032 |