Reciprocal collision avoidance for robots with linear dynamics using LQR-Obstacles
In this paper we present a formal approach to reciprocal collision avoidance for multiple mobile robots sharing a common 2-D or 3-D workspace whose dynamics are subject to linear differential constraints. Our approach defines a protocol for robots to select their control input independently (i.e. wi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present a formal approach to reciprocal collision avoidance for multiple mobile robots sharing a common 2-D or 3-D workspace whose dynamics are subject to linear differential constraints. Our approach defines a protocol for robots to select their control input independently (i.e. without coordination with other robots) while guaranteeing collision-free motion for all robots, assuming the robots can perfectly observe each other's state. To this end, we extend the concept of LQR-Obstacles (which is a generalization of Velocity Obstacles to robots with dynamics for collision avoidance among static obstacles) for reciprocal collision avoidance among multiple robots. We implemented and tested our approach in 3-D simulation environments for reciprocal collision avoidance of quadrotor helicopters, which have complex dynamics in 16-D state spaces. Our results show that our approach enables collision avoidance among over a hundred quadrotors in tight workspaces at real-time computation rates. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ICRA.2013.6631118 |