Bonding methods for modular micro-robotic assemblies

To address some of the challenges in modular micro-robotics, we present a new heat-activated bonding method for assembly. This bonding method quickly forms strong bonds through the use of thermoplastic or solder binding sites integrated into each module face, addressing problems of assembly strength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Diller, Eric, Naicheng Zhang, Sitti, Metin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To address some of the challenges in modular micro-robotics, we present a new heat-activated bonding method for assembly. This bonding method quickly forms strong bonds through the use of thermoplastic or solder binding sites integrated into each module face, addressing problems of assembly strength and electrical conductivity. The strength of the bonds for each method are compared for different module styles, bonding conditions and breaking conditions in a destructive test. For 800μm modules, bond strengths of up to 500mN are observed with thermoplastic bonds, which indicates that the assemblies could be potentially used in high-force structural applications of programmable matter, microfluidic channels or healthcare. By magnetically functionalizing the modules using embedded magnetic particles, the modules are moved remotely for assembly using a magnetic coil system. In this way, a set of six modules are remotely assembled one-by-one into an arbitrary shape capable of locomotion to demonstrate the scalability and strength of the system.
ISSN:1050-4729
2577-087X
DOI:10.1109/ICRA.2013.6630931