What's wrong with collision detection in multibody dynamics simulation?
Contemporary time-stepping methods used in the dynamic simulation of rigid bodies suffer from problems in accuracy, performance, and robustness. Significant allowances for tuning, coupled with careful implementation of a broad phase collision detection scheme is required to make dynamic simulation u...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Contemporary time-stepping methods used in the dynamic simulation of rigid bodies suffer from problems in accuracy, performance, and robustness. Significant allowances for tuning, coupled with careful implementation of a broad phase collision detection scheme is required to make dynamic simulation useful for practical applications. A recently developed formulation method is presented herein that is more robust, and not dependent on broad-phase collision detection or system tuning for its behavior. Several uncomplicated benchmark examples are presented to give an analysis and make a comparison of the new Polyhedral Exact Geometry time-stepping method with the well-known Stewart-Trinkle time-stepping method. The behavior and performance for the two methods are discussed. This includes specific cases where contemporary time-steppers fail, and how they are ameliorated by the new method presented here. The goal of this work is to complete the groundwork for further research into high performance simulation. |
---|---|
ISSN: | 1050-4729 2577-087X |
DOI: | 10.1109/ICRA.2013.6630689 |