A 2D/3D Vision Based Approach Applied to Road Detection in Urban Environments

This paper presents an approach for road detection based on image segmentation. This segmentation is resulted from merging 2D and 3D image processing data from a stereo vision system. The 2D layer returns a matrix containing pixel's clusters based on the Watershed transform. Whereas the 3D laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vitor, Giovani B., Lima, Danilo A., Victorino, Alessandro C., Ferreira, Janito V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an approach for road detection based on image segmentation. This segmentation is resulted from merging 2D and 3D image processing data from a stereo vision system. The 2D layer returns a matrix containing pixel's clusters based on the Watershed transform. Whereas the 3D layer return labels, that are classified by the V-Disparity technique, to free spaces, obstacles and non-classified area. Thus, a feature's descriptor for each cluster is composed with features from both layers. The road pattern recognition was performed by an artificial neural network, trained to obtain a final result from this feature's descriptor. The proposed work reports real experiments carried out in a challenging urban environment to illustrate the validity and application of this approach.
ISSN:1931-0587
2642-7214
DOI:10.1109/IVS.2013.6629589