Efficient textural model-based mammogram enhancement
An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 523 |
---|---|
container_issue | |
container_start_page | 522 |
container_title | |
container_volume | |
creator | Haindl, Michal Remes, Vaclav |
description | An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available. |
doi_str_mv | 10.1109/CBMS.2013.6627859 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6627859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6627859</ieee_id><sourcerecordid>6627859</sourcerecordid><originalsourceid>FETCH-LOGICAL-i245t-737087e067144676d3b99e42ca22cd44c94fec10a4e9fa7cf2130b85c06889a33</originalsourceid><addsrcrecordid>eNotj8tKxEAQAEdQcF33A8RLfiCxe3oyj6Mu6wNWPKjnpTPp0UgmK0kE_XsF91SXoqCUukCoECFcrW8enysNSJW12vk6HKlVcB6NCwGhJjpWCwRLpUNdn6qzafoAAOOQFspsUupiJ8NczPI9f43cF3nfSl82PElbZM55_zZyLmR45yFK_lPP1UnifpLVgUv1ert5Wd-X26e7h_X1tuy0qefSkQPvBKxDY6yzLTUhiNGRtY6tMTGYJBGBjYTELiaNBI2vI1jvAxMt1eV_txOR3efYZR5_dodJ-gX0ZETx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient textural model-based mammogram enhancement</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haindl, Michal ; Remes, Vaclav</creator><creatorcontrib>Haindl, Michal ; Remes, Vaclav</creatorcontrib><description>An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available.</description><identifier>ISSN: 1063-7125</identifier><identifier>EISBN: 9781479910533</identifier><identifier>EISBN: 1479910538</identifier><identifier>DOI: 10.1109/CBMS.2013.6627859</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Breast cancer ; Computers ; Predictive models ; Solid modeling</subject><ispartof>Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, 2013, p.522-523</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6627859$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6627859$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haindl, Michal</creatorcontrib><creatorcontrib>Remes, Vaclav</creatorcontrib><title>Efficient textural model-based mammogram enhancement</title><title>Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems</title><addtitle>CBMS</addtitle><description>An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available.</description><subject>Adaptation models</subject><subject>Breast cancer</subject><subject>Computers</subject><subject>Predictive models</subject><subject>Solid modeling</subject><issn>1063-7125</issn><isbn>9781479910533</isbn><isbn>1479910538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tKxEAQAEdQcF33A8RLfiCxe3oyj6Mu6wNWPKjnpTPp0UgmK0kE_XsF91SXoqCUukCoECFcrW8enysNSJW12vk6HKlVcB6NCwGhJjpWCwRLpUNdn6qzafoAAOOQFspsUupiJ8NczPI9f43cF3nfSl82PElbZM55_zZyLmR45yFK_lPP1UnifpLVgUv1ert5Wd-X26e7h_X1tuy0qefSkQPvBKxDY6yzLTUhiNGRtY6tMTGYJBGBjYTELiaNBI2vI1jvAxMt1eV_txOR3efYZR5_dodJ-gX0ZETx</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Haindl, Michal</creator><creator>Remes, Vaclav</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201306</creationdate><title>Efficient textural model-based mammogram enhancement</title><author>Haindl, Michal ; Remes, Vaclav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i245t-737087e067144676d3b99e42ca22cd44c94fec10a4e9fa7cf2130b85c06889a33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>Breast cancer</topic><topic>Computers</topic><topic>Predictive models</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Haindl, Michal</creatorcontrib><creatorcontrib>Remes, Vaclav</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haindl, Michal</au><au>Remes, Vaclav</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient textural model-based mammogram enhancement</atitle><btitle>Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems</btitle><stitle>CBMS</stitle><date>2013-06</date><risdate>2013</risdate><spage>522</spage><epage>523</epage><pages>522-523</pages><issn>1063-7125</issn><eisbn>9781479910533</eisbn><eisbn>1479910538</eisbn><abstract>An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available.</abstract><pub>IEEE</pub><doi>10.1109/CBMS.2013.6627859</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-7125 |
ispartof | Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, 2013, p.522-523 |
issn | 1063-7125 |
language | eng |
recordid | cdi_ieee_primary_6627859 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models Breast cancer Computers Predictive models Solid modeling |
title | Efficient textural model-based mammogram enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20textural%20model-based%20mammogram%20enhancement&rft.btitle=Proceedings%20of%20the%2026th%20IEEE%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems&rft.au=Haindl,%20Michal&rft.date=2013-06&rft.spage=522&rft.epage=523&rft.pages=522-523&rft.issn=1063-7125&rft_id=info:doi/10.1109/CBMS.2013.6627859&rft_dat=%3Cieee_6IE%3E6627859%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479910533&rft.eisbn_list=1479910538&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6627859&rfr_iscdi=true |