Efficient textural model-based mammogram enhancement
An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available. |
---|---|
ISSN: | 1063-7125 |
DOI: | 10.1109/CBMS.2013.6627859 |