Efficient textural model-based mammogram enhancement

An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haindl, Michal, Remes, Vaclav
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient method for X-ray digital mammogram multi-view enhancement based on the underlying two-dimensional adaptive causal autoregressive texture model is presented. The method locally predicts breast tissue texture from multi-view mammograms and enhances breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction error. The mammo-gram enhancement is based on the cross-prediction error of mutually registered left and right breasts mammograms or on the single-view model prediction error if both breasts' mammograms are not available.
ISSN:1063-7125
DOI:10.1109/CBMS.2013.6627859