Pudendal neuromodulation with a closed-loop control strategy to improve bladder functions in the animal study

The aim of this study was to develop a new closed-loop control strategy for improving bladder emptying and verify its performance in animal experiments. Two channel outputs of electrical currents triggered by intravesical pressure (IVP)-feedback signals were set to automatically regulate the rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Peng, Chih-Wei, Lin, Yin-Tsong, Chen, Shih-Ching, Kuo, Te-Son
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to develop a new closed-loop control strategy for improving bladder emptying and verify its performance in animal experiments. Two channel outputs of electrical currents triggered by intravesical pressure (IVP)-feedback signals were set to automatically regulate the rat's pudendal nerve for selective nerve stimulation and blocking. Under this experimental design, a series of in-vivo animal experiments were conducted on anesthetized rats. Our results showed that the IVP-feedback control strategy for dual-channel pudendal neuromodulation performed well in animal experiments and could be utilized to selectively stimulate and block the pudendal nerve to augment bladder contraction and restore external urethral sphincter (EUS) bursting activity to simultaneously improve bladder emptying. This study demonstrates the feasibility of the IVP-based feedback-control strategy with animal experiments, and the results could provide a basis for developing a sophisticated neural prosthesis for restoring bladder function in clinical use or the relative neurophysiological study.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/EMBC.2013.6610328