Reconfiguration-based implementation of SVM classifier on FPGA for Classifying Microarray data

Classifying Microarray data, which are of high dimensional nature, requires high computational power. Support Vector Machines-based classifier (SVM) is among the most common and successful classifiers used in the analysis of Microarray data but also requires high computational power due to its compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hussain, Hanaa M., Benkrid, Khaled, Seker, Huseyin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classifying Microarray data, which are of high dimensional nature, requires high computational power. Support Vector Machines-based classifier (SVM) is among the most common and successful classifiers used in the analysis of Microarray data but also requires high computational power due to its complex mathematical architecture. Implementing SVM on hardware exploits the parallelism available within the algorithm kernels to accelerate the classification of Microarray data. In this work, a flexible, dynamically and partially reconfigurable implementation of the SVM classifier on Field Programmable Gate Array (FPGA) is presented. The SVM architecture achieved up to 85× speed-up over equivalent general purpose processor (GPP) showing the capability of FPGAs in enhancing the performance of SVM-based analysis of Microarray data as well as future bioinformatics applications.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/EMBC.2013.6610186