Current steering for high resolution retinal implants

To significantly increase the resolution achievable by a retinal prosthesis without requiring additional electrodes, a current steering technique could be utilized. In this study, a finite element model was constructed to analyze the local concentrations of charge carrying ions within a saline bath...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Opie, N. L., Lovell, N. H., Suaning, G. J., Preston, P., Dokos, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To significantly increase the resolution achievable by a retinal prosthesis without requiring additional electrodes, a current steering technique could be utilized. In this study, a finite element model was constructed to analyze the local concentrations of charge carrying ions within a saline bath due to concurrent stimulation from two electrodes surrounded by a hexagonal arrangement of return electrodes. By altering the return pathways, tissue activation and identification of unique stimulation patterns is possible. Ag/Ag-Cl electrodes and a voltage controlled current source were developed to validate the finite element model, with the model accurately predicting saline bath measurements. The average error in the returned currents between the finite element model and experimental results was 2% relative to the stimulus current.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/EMBC.2013.6610112