The Impact of n-p-n Selector-Based Bipolar RRAM Cross-Point on Array Performance
Recently, we have presented a circuit model of the n-p-n selector, validated by experimentally calibrated TCAD data and implemented in SPICE for cross-point memory array performance analysis. In this paper, we study the array circuit performance during memory operations and present five interesting...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2013-10, Vol.60 (10), p.3385-3392 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, we have presented a circuit model of the n-p-n selector, validated by experimentally calibrated TCAD data and implemented in SPICE for cross-point memory array performance analysis. In this paper, we study the array circuit performance during memory operations and present five interesting insights. First, power consumption minimization during set/reset operation produces the dominant constraint that defines selector/memory pairing, and consequently the cross-point nonlinearity, i.e., ON-OFF current ratio (KI). Second, an optimal KI exists (e.g., 10 4 for 1-M array size), which implies that excessively higher KI degrades performance. Third, parallel read operation (i.e., N bits/read) can be performed and N increases with higher resistance in low-resistance state (RLRS) without compromising read margin (RM). Fourth, higher resistance ratio improves RM. Finally, read circuit with an improved sensitivity is highly attractive as 2× lesser RM requirement can improve parallel read capability by 10×. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2013.2279553 |