Semi-Supervised Hyperspectral Image Classification Using Spatio-Spectral Laplacian Support Vector Machine
In this letter, we propose a new spatio-spectral Laplacian support vector machine (SS-LapSVM) for semi-supervised hyperspectral image classification. The clustering assumption on spectral vectors is used to formulate a manifold regularizer, and neighborhood spatial constraints of hyperspectral image...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2014-03, Vol.11 (3), p.651-655 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we propose a new spatio-spectral Laplacian support vector machine (SS-LapSVM) for semi-supervised hyperspectral image classification. The clustering assumption on spectral vectors is used to formulate a manifold regularizer, and neighborhood spatial constraints of hyperspectral images are designed to construct a spatial regularizer. Moreover, a non-iterative optimization procedure is presented to solve this dual-regularized SVM, which makes rapid classification possible. By combining spatial and spectral information together, SS-LapSVM can avoid the speckle-like misclassification of hyperspectral images in the original Lap-SVM. The performance of SS-LapSVM is evaluated on AVIRIS image data taken over Indiana's Indian Pine, and the results show that it can achieve accurate and rapid classification with a small number of labeled data, and outperform state-of-the-art semi-supervised approaches. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2013.2273792 |