Semi-Supervised Hyperspectral Image Classification Using Spatio-Spectral Laplacian Support Vector Machine

In this letter, we propose a new spatio-spectral Laplacian support vector machine (SS-LapSVM) for semi-supervised hyperspectral image classification. The clustering assumption on spectral vectors is used to formulate a manifold regularizer, and neighborhood spatial constraints of hyperspectral image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2014-03, Vol.11 (3), p.651-655
Hauptverfasser: Lixia Yang, Shuyuan Yang, Penglei Jin, Rui Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we propose a new spatio-spectral Laplacian support vector machine (SS-LapSVM) for semi-supervised hyperspectral image classification. The clustering assumption on spectral vectors is used to formulate a manifold regularizer, and neighborhood spatial constraints of hyperspectral images are designed to construct a spatial regularizer. Moreover, a non-iterative optimization procedure is presented to solve this dual-regularized SVM, which makes rapid classification possible. By combining spatial and spectral information together, SS-LapSVM can avoid the speckle-like misclassification of hyperspectral images in the original Lap-SVM. The performance of SS-LapSVM is evaluated on AVIRIS image data taken over Indiana's Indian Pine, and the results show that it can achieve accurate and rapid classification with a small number of labeled data, and outperform state-of-the-art semi-supervised approaches.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2013.2273792