A greedy rational Krylov method for ℋ2-pseudooptimal model order reduction with preservation of stability

We present a new approach to the problem of finding suitable expansion points in Krylov subspace methods for the model reduction of LTI systems. Using a factorized formulation of the resulting error model, we can efficiently apply a greedy algorithm and perform multiple reduction steps instead of lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Panzer, Heiko K. F., Jaensch, Stefan, Wolf, Thomas, Lohmann, Boris
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5517
container_issue
container_start_page 5512
container_title
container_volume
creator Panzer, Heiko K. F.
Jaensch, Stefan
Wolf, Thomas
Lohmann, Boris
description We present a new approach to the problem of finding suitable expansion points in Krylov subspace methods for the model reduction of LTI systems. Using a factorized formulation of the resulting error model, we can efficiently apply a greedy algorithm and perform multiple reduction steps instead of looking for all shifts at once. An expedient globally convergent optimization algorithm delivers locally ℋ 2 -optimal two-dimensional ROMs in each step. The overall ROM, whose error decreases monotonically, is ℋ 2 -pseudooptimal and guaranteed to be stable; its order can be chosen on-the-fly. Ready-to-run Matlab demo code is provided in the Appendix.
doi_str_mv 10.1109/ACC.2013.6580700
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6580700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6580700</ieee_id><sourcerecordid>6580700</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cdededb231afc8ea03e552541308cac6b6edc397c45a36cfdf61b75bd33f0c413</originalsourceid><addsrcrecordid>eNo1ULtOwzAUNS-JtHRHYvEPpFzHsR2PVcRLVGLpXjn2DTWkOHLSouxs_CVfQoCiM5zhPHR0CLlkMGcM9PWiLOcZMD6XogAFcERmWhUsV1oDU4IfkyTjqkhFIdkJmfwLSp6SBFTOUyaZPieTrnsBYFpLSMjrgj5HRDfQaHof3kxDH-PQhD3dYr8JjtYh0q-PzyxtO9y5ENreb0fTNjhsaIgOI43odvYnTN99v6FtxA7j_reOhpp2val84_vhgpzVpulwduApWd3erMr7dPl091AulqnX0KfW4Ygq48zUtkADHIXIRM44FNZYWUl0lmtlc2G4tLWrJauUqBznNdjRNiVXf7UeEddtHPfGYX34jH8DnZhfog</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A greedy rational Krylov method for ℋ2-pseudooptimal model order reduction with preservation of stability</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Panzer, Heiko K. F. ; Jaensch, Stefan ; Wolf, Thomas ; Lohmann, Boris</creator><creatorcontrib>Panzer, Heiko K. F. ; Jaensch, Stefan ; Wolf, Thomas ; Lohmann, Boris</creatorcontrib><description>We present a new approach to the problem of finding suitable expansion points in Krylov subspace methods for the model reduction of LTI systems. Using a factorized formulation of the resulting error model, we can efficiently apply a greedy algorithm and perform multiple reduction steps instead of looking for all shifts at once. An expedient globally convergent optimization algorithm delivers locally ℋ 2 -optimal two-dimensional ROMs in each step. The overall ROM, whose error decreases monotonically, is ℋ 2 -pseudooptimal and guaranteed to be stable; its order can be chosen on-the-fly. Ready-to-run Matlab demo code is provided in the Appendix.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1479901776</identifier><identifier>ISBN: 9781479901777</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781479901753</identifier><identifier>EISBN: 147990175X</identifier><identifier>EISBN: 1479901784</identifier><identifier>EISBN: 9781479901784</identifier><identifier>DOI: 10.1109/ACC.2013.6580700</identifier><language>eng</language><publisher>IEEE</publisher><subject>Mathematical model ; Mirrors ; Optimization ; Read only memory ; Reduced order systems ; Sparks ; Vectors</subject><ispartof>2013 American Control Conference, 2013, p.5512-5517</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6580700$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6580700$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Panzer, Heiko K. F.</creatorcontrib><creatorcontrib>Jaensch, Stefan</creatorcontrib><creatorcontrib>Wolf, Thomas</creatorcontrib><creatorcontrib>Lohmann, Boris</creatorcontrib><title>A greedy rational Krylov method for ℋ2-pseudooptimal model order reduction with preservation of stability</title><title>2013 American Control Conference</title><addtitle>ACC</addtitle><description>We present a new approach to the problem of finding suitable expansion points in Krylov subspace methods for the model reduction of LTI systems. Using a factorized formulation of the resulting error model, we can efficiently apply a greedy algorithm and perform multiple reduction steps instead of looking for all shifts at once. An expedient globally convergent optimization algorithm delivers locally ℋ 2 -optimal two-dimensional ROMs in each step. The overall ROM, whose error decreases monotonically, is ℋ 2 -pseudooptimal and guaranteed to be stable; its order can be chosen on-the-fly. Ready-to-run Matlab demo code is provided in the Appendix.</description><subject>Mathematical model</subject><subject>Mirrors</subject><subject>Optimization</subject><subject>Read only memory</subject><subject>Reduced order systems</subject><subject>Sparks</subject><subject>Vectors</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1479901776</isbn><isbn>9781479901777</isbn><isbn>9781479901753</isbn><isbn>147990175X</isbn><isbn>1479901784</isbn><isbn>9781479901784</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1ULtOwzAUNS-JtHRHYvEPpFzHsR2PVcRLVGLpXjn2DTWkOHLSouxs_CVfQoCiM5zhPHR0CLlkMGcM9PWiLOcZMD6XogAFcERmWhUsV1oDU4IfkyTjqkhFIdkJmfwLSp6SBFTOUyaZPieTrnsBYFpLSMjrgj5HRDfQaHof3kxDH-PQhD3dYr8JjtYh0q-PzyxtO9y5ENreb0fTNjhsaIgOI43odvYnTN99v6FtxA7j_reOhpp2val84_vhgpzVpulwduApWd3erMr7dPl091AulqnX0KfW4Ygq48zUtkADHIXIRM44FNZYWUl0lmtlc2G4tLWrJauUqBznNdjRNiVXf7UeEddtHPfGYX34jH8DnZhfog</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Panzer, Heiko K. F.</creator><creator>Jaensch, Stefan</creator><creator>Wolf, Thomas</creator><creator>Lohmann, Boris</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201306</creationdate><title>A greedy rational Krylov method for ℋ2-pseudooptimal model order reduction with preservation of stability</title><author>Panzer, Heiko K. F. ; Jaensch, Stefan ; Wolf, Thomas ; Lohmann, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cdededb231afc8ea03e552541308cac6b6edc397c45a36cfdf61b75bd33f0c413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematical model</topic><topic>Mirrors</topic><topic>Optimization</topic><topic>Read only memory</topic><topic>Reduced order systems</topic><topic>Sparks</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Panzer, Heiko K. F.</creatorcontrib><creatorcontrib>Jaensch, Stefan</creatorcontrib><creatorcontrib>Wolf, Thomas</creatorcontrib><creatorcontrib>Lohmann, Boris</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panzer, Heiko K. F.</au><au>Jaensch, Stefan</au><au>Wolf, Thomas</au><au>Lohmann, Boris</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A greedy rational Krylov method for ℋ2-pseudooptimal model order reduction with preservation of stability</atitle><btitle>2013 American Control Conference</btitle><stitle>ACC</stitle><date>2013-06</date><risdate>2013</risdate><spage>5512</spage><epage>5517</epage><pages>5512-5517</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1479901776</isbn><isbn>9781479901777</isbn><eisbn>9781479901753</eisbn><eisbn>147990175X</eisbn><eisbn>1479901784</eisbn><eisbn>9781479901784</eisbn><abstract>We present a new approach to the problem of finding suitable expansion points in Krylov subspace methods for the model reduction of LTI systems. Using a factorized formulation of the resulting error model, we can efficiently apply a greedy algorithm and perform multiple reduction steps instead of looking for all shifts at once. An expedient globally convergent optimization algorithm delivers locally ℋ 2 -optimal two-dimensional ROMs in each step. The overall ROM, whose error decreases monotonically, is ℋ 2 -pseudooptimal and guaranteed to be stable; its order can be chosen on-the-fly. Ready-to-run Matlab demo code is provided in the Appendix.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2013.6580700</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2013 American Control Conference, 2013, p.5512-5517
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_6580700
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Mathematical model
Mirrors
Optimization
Read only memory
Reduced order systems
Sparks
Vectors
title A greedy rational Krylov method for ℋ2-pseudooptimal model order reduction with preservation of stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20greedy%20rational%20Krylov%20method%20for%20%E2%84%8B2-pseudooptimal%20model%20order%20reduction%20with%20preservation%20of%20stability&rft.btitle=2013%20American%20Control%20Conference&rft.au=Panzer,%20Heiko%20K.%20F.&rft.date=2013-06&rft.spage=5512&rft.epage=5517&rft.pages=5512-5517&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1479901776&rft.isbn_list=9781479901777&rft_id=info:doi/10.1109/ACC.2013.6580700&rft_dat=%3Cieee_6IE%3E6580700%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781479901753&rft.eisbn_list=147990175X&rft.eisbn_list=1479901784&rft.eisbn_list=9781479901784&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6580700&rfr_iscdi=true