A greedy rational Krylov method for ℋ2-pseudooptimal model order reduction with preservation of stability

We present a new approach to the problem of finding suitable expansion points in Krylov subspace methods for the model reduction of LTI systems. Using a factorized formulation of the resulting error model, we can efficiently apply a greedy algorithm and perform multiple reduction steps instead of lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Panzer, Heiko K. F., Jaensch, Stefan, Wolf, Thomas, Lohmann, Boris
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new approach to the problem of finding suitable expansion points in Krylov subspace methods for the model reduction of LTI systems. Using a factorized formulation of the resulting error model, we can efficiently apply a greedy algorithm and perform multiple reduction steps instead of looking for all shifts at once. An expedient globally convergent optimization algorithm delivers locally ℋ 2 -optimal two-dimensional ROMs in each step. The overall ROM, whose error decreases monotonically, is ℋ 2 -pseudooptimal and guaranteed to be stable; its order can be chosen on-the-fly. Ready-to-run Matlab demo code is provided in the Appendix.
ISSN:0743-1619
2378-5861
DOI:10.1109/ACC.2013.6580700