Gain-scheduled model predictive control of wind turbines using Laguerre functions

This paper presents a systematic approach to design gain-scheduled predictive controllers for wind turbines. The predictive control law is based on Laguerre functions to parameterize control signals and a parameter-dependent cost function that is analytically determined from turbine data. These prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adegas, Fabiano D., Wisniewski, Rafal, Sloth Larsen, Lars Finn
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a systematic approach to design gain-scheduled predictive controllers for wind turbines. The predictive control law is based on Laguerre functions to parameterize control signals and a parameter-dependent cost function that is analytically determined from turbine data. These properties facilitate the design of speed controllers by placement of the closed-loop poles (when constraints are not active) and systematic adaptation towards changes in the operating point. Vibration control of undamped modes is achieved by imposing a certain degree of stability to the closed-loop system. The approach can be utilized to the design of new controllers and to represent existing gain-scheduled controllers as predictive controllers. The numerical example and simulations illustrate the design of a speed controller augmented with active damping of the tower fore-aft displacement.
ISSN:0743-1619
2378-5861
DOI:10.1109/ACC.2013.6579911